Stratified sampling for feature subspace selection in random forests for high dimensional data

نویسندگان

  • Yunming Ye
  • Qingyao Wu
  • Joshua Zhexue Huang
  • Michael K. Ng
  • Xutao Li
چکیده

For high dimensional data a large portion of features are often not informative of the class of the objects. Random forest algorithms tend to use a simple random sampling of features in building their decision trees and consequently select many subspaces that contain few, if any, informative features. In this paper we propose a stratified sampling method to select the feature subspaces for random forests with high dimensional data. The key idea is to stratify features into two groups. One group will contain strong informative features and the other weak informative features. Then, for feature subspace selection, we randomly select features from each group proportionally. The advantage of stratified sampling is that we can ensure that each subspace contains enough informative features for classification in high dimensional data. Testing on both synthetic data and various real data sets in gene classification, image categorization and face recognition data sets consistently demonstrates the effectiveness of this new method. The performance is shown to better that of state-of-the-art algorithms including SVM, the four variants of random forests (RF, ERT, enrich-RF, and oblique-RF), and nearest neighbor (NN) algorithms. & 2012 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensions to Quantile Regression Forests for Very High-Dimensional Data

This paper describes new extensions to the state-of-the-art regression random forests Quantile Regression Forests (QRF) for applications to high dimensional data with thousands of features. We propose a new subspace sampling method that randomly samples a subset of features from two separate feature sets, one containing important features and the other one containing less important features. Th...

متن کامل

An Improved Random Forest Classifier for Text Categorization

This paper proposes an improved random forest algorithm for classifying text data. This algorithm is particularly designed for analyzing very high dimensional data with multiple classes whose well-known representative data is text corpus. A novel feature weighting method and tree selection method are developed and synergistically served for making random forest framework well suited to categori...

متن کامل

Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data

Random forests (RFs) have been widely used as a powerful classification method. However, with the randomization in both bagging samples and feature selection, the trees in the forest tend to select uninformative features for node splitting. This makes RFs have poor accuracy when working with high-dimensional data. Besides that, RFs have bias in the feature selection process where multivalued fe...

متن کامل

Weighted random subspace method for high dimensional data classification.

High dimensional data, especially those emerging from genomics and proteomics studies, pose significant challenges to traditional classification algorithms because the performance of these algorithms may substantially deteriorate due to high dimensionality and existence of many noisy features in these data. To address these problems, pre-classification feature selection and aggregating algorith...

متن کامل

Classifying Very High-Dimensional Data with Random Forests Built from Small Subspaces

The selection of feature subspaces for growing decision trees is a key step in building random forest models. However, the common approach using randomly sampling a few features in the subspace is not suitable for high dimensional data consisting of thousands of features, because such data often contains many features which are uninformative to classification, and the random sampling often does...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2013